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ABSTRACT 

The matrices of Boundary Element Method (BEM) are fully populated and require 

special compression techniques for the efficient treatment. In this article, the H-matrix 

representation is used to approximate the dense stiffness matrix in admissible blocks 

by low-rank matrices. This paper presents a Geometric Mapping Cross 

Approximation (GMCA) algorithm to compute the low-rank matrices. Compared with 

the Adaptive Cross Approximation (ACA), the GMCA determines the skeleton points 

from the two interacting groups of nodes by their spacing characteristics directly and, 

thus, has a remarkable non-iterative nature and requires some simple geometric 

transformations, only. Numerical examples show that the new algorithm is feasible. 

Keywords: H-matrix; low-rank matrices; adaptive cross approximation; skeleton point; 

geometric mapping 

 
1. INTRODUCTION 

In the applied and engineering sciences, Boundary Element Method (BEM) plays an 

important role, especially in the problems with infinite domain. However, the 

resulting matrices are in general dense and require computer memory consumption 



scale quadratically with respect to the degrees of freedom. The efficient treatment of 

dense matrices requires special compression techniques to reduce the storage 

requirement and speed up the arithmetic (e.g., inversion).  

   Several fast solutions of boundary integral equation have been developed in the 

last two decades. Well known are panel clustering[1,2], multipole expansions [3-8] 

and (adaptive) cross approximation[9-12,17,18]. Even the wavelet technique can also 

be used to compress the resulting dense matrix, when the underlying geometry can be 

described by a few of smooth maps[13]. 

   The panel clustering and fast multipole method (FMM) are both based on an 

explicit Taylor series expansion of the kernel function. However, the former neglects 

the special structure of the kernel function as a result that the separation rank 

produced by this method is rather large[12]. Compared with the panel clustering, the 

fast multipole method not only requires explicit expansion but also exploits this 

special structure. Obviously, these two methods are limited to the standard kernel 

functions where they are known and the expansions of the kernel functions in 

different problems are not uniform. 

   A new approximation method is proposed by Bebendorf (cf.(1)). As can be seen in 

Eq. 1, this method takes the single-variable function which is the result of fixing some 

source points or field points of the kernel function as the basis of the interpolation 

space. The selected points are called skeleton points. Hence, the low rank 

approximation can be assembled when we have found an optimal set of the skeleton 

points. Obviously, the optimal set of the skeleton points is not unique. 
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An algorithm called adaptive cross approximation (ACA) is proposed by Bebendorf 

and Rjasanow[9,10,17]. This algorithm determines the skeleton points similarly to 

Gram-Schmidt orthogonalization. It uses only entries from the original matrix for the 

approximation of each block. This algorithm can be regarded as the algebraic 

counterparts of panel clustering and fast multipole methods. There is no need for the 



expansion of the kernel function. Compared with the FMM, the ACA is the easier 

parallelization of the algorithm[14] and much simpler to be implemented. Meanwhile, 

as an advantage over the FMM, an approximation of the global matrix can be used for 

preconditioning besides the near-field matrix[15]. The Hybrid Cross Approximation 

(HCA) which combines the ACA algorithm and the interpolation-based separation of 

the kernel function is proposed by Steffen and Lars[12]. An algorithm which 

constructs nested bases approximations in the spirit of ACA is proposed by Bebendorf 

and Venn[19] to farther improve the storage complexity of low rank approximation. 

Likewise, an algorithm which determines the skeleton points using random sampling 

technique is proposed by P.G. Martinsson[16]. 

   Our contribution is a new non-iterative method that implements the low rank 

approximation of each admissible block in the original matrix of BEM based on the 

geometric mapping. It is well known that the matrices of BEM are derived from the 

boundary integrals of the kernel functions. In contrast with implementations by 

constant elements where analytical integration is feasible, numerical integrations are 

inevitable when the higher order elements are used. However, it would be difficult 

and considerably inefficient to encapsulate the numerical integration into the iteration 

procedure of the ACA. The goal of the proposed method is separating the procedure 

of determining the skeleton points from the integral operation of the kernel function. 

The skeleton points are determined in advance from the perspective of the geometric 

characteristics. Then, the boundary integrals which correspond to the skeleton points 

in the far-field can be computed together with those for the near-field interaction. 

Integrals for both near-field and far-field interactions are computed in a unified 

framework in the same way as the traditional BEM.  

   The rest of this article is organized as follows: in Section 2, we introduce a simple 

model problem and describe the H-matrix format and the low rank approximation in 

short. In Section 3, we introduce the Geometric Mapping Cross Approximation 

algorithm and provide numerical examples that show this algorithm is feasible in 

Section 4. Finally, the paper ends with conclusions in Section 5. 

 



2. THE H-MATRIX FORMAT 

2.1. Model problem: integral equation 

Large dense matrices are usually derived from the BEM without additional structure. 

These matrices arise after the discretisation of the boundary integral equation 

[ ]( ) ( , ) ( ) ( )A u x K x y u y d y


                  (2) 

where 3R is the boundary of the computational domain and K : R  is the 

kernel function. The kernel function might be the single or double layer kernel for the 

Laplacian: 
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The kernel functions ),( yxg SLP  and ),( yxg DLP  are asymptotically smooth. In fact, 

H-matrix is based on the typical kernel functions, singularities only occur at the 

diagonal and the function is smooth everywhere else[12].  

   A standard Galerkin discretisation of A[u](x) for a basis  ( ) , 1,...,j j I I n   , 

 1: ,...,n nV span   , yields a matrix A with entries 

)()()(),()(, ydxdyyxKxa ijji   
 

               (3) 

The support of the kernel function K(x,y) is in general not local. So, a dense matrix A 

arises. The computational complexity for computing and the storage requirement for 

storing a dense matrix are quadratic to the number of the degrees of freedom. Hence, 

an efficient approximation method has to be developed. 

 

2.2. Low-rank approximation 

The rank of a matrix A is defined as the number of linearly independent columns or 

rows of A. For a matrix A nmC  , the rank of A is bounded by the minimum value of 

the m and n. Although the matrices in the BEM usually have full rank, they can often 

be approximated by matrices having a much lower rank. For example, a matrix 

A nmC  , the rank of A is k. A low rank approximation of A can be represented as a 



factorisation of the form TUVA  with matrices kmkn RVRU   , (cf. Fig.1). 

 
Fig. 1. The schematic diagram of the low rank approximation 

The storage requirement in low rank approximation is k(m+n) in contrast to the 

quadratic cost mn for standard full matrix. Hence, if the k is small and the condition 

k(m+n) < mn is satisfied, A matrix is said to be of low rank. These matrices are 

favorably stored in the outer-product form.  

   The operational complexity in the matrix-vector multiplication is also efficiently 

improved. In the standard representation, the number of dominant arithmetic 

operations is mn. In contrast to this, only 2k(m+n)-k-n additions and multiplications  

of real numbers are necessary in the outer-product form. 

The best possible low rank approximation of the matrix A nmC   can be obtained 

by its singular value decomposition (SVD). However, the cost of computing an SVD 

for a general matrix is expensive. For this reason, some cross approximation 

algorithms are applied [9-12, 17, 18]. In Section 3 we will construct a low rank 

approximation of the matrix A (cf.(3)) by a non-iterative cross approximation 

algorithm which is based on the geometric mapping. 

 

3. GEOMETRIC MAPPING CROSS APPROXIMATION ALGORITHM 

The cross approximation algorithm can be regarded as the procedure of searching 

the skeleton points from the two admissible interacting groups of nodes. The higher 

approximation accuracy can be obtained if the columns or rows in the two low rank 

matrices which are computed by the skeleton points have the larger linear 

independence. In the BEM, the kernel functions are asymptotically smooth, and are 

the decay functions of the distance between the source point and the field points. Thus, 

we try to determine the skeleton points based on the relative geometric relationship 



between the boundary nodes. 

 
Fig. 2. The admissible block st  corresponds to a subset st   

3.1. The geometric mapping 

In this section, we will introduce the geometric mapping for obtaining the skeleton 

points. The same as the ACA, this algorithm requires that the strong -admissibility 

condition holds [9,10,17]. In other words, it will be effective only on those parts of 

the domain that are far from the singularity as well. We fix axially parallel boxes Bs 

and Bt which bound the nodes of the BEM and hold the strong -admissibility 

condition(cf. Fig.2). 

 
Fig. 3.  The boxes tB and sB  in the three dimensions and the geometric mapping 

The image of the parallel boxes Bt and Bs in three dimensions are shown in Fig.3. Now, 

let us implement the geometric mapping in the box Bs. Firstly, We denote the centers 

of the two boxes by T and S. All nodes in the box Bs are the object nodes. The 

projection plane is defined in the box Bs , which is perpendicular to the vector A 

drawn from point T to S , and passes through the point S.  

   Secondly, we set the local coordinate system (x*, y*, z*) on the projection plane in 

which the axis z* is reversed to the vector A and the origin is coincidence with the 



point S (cf. Fig.4). 

 
Fig. 4.  The local coordinate system on the projection plane 

Thirdly, all object nodes are projected to the projection plane along the mapping 

vectors drawn from the center T to the object nodes, respectively. For example, a node 

in the box Bs is denoted by P. Then, the projection point Pl corresponding to the object 

node P is the intersection of the mapping vector B with the projection plane (cf. 

Fig.3). So, we can obtain the coordinates of the projection point Pl by 

 

                                                                  (4) 

 

in which Pl and T denote the coordinates of the point Pl and T, respectively. The 

vectors A and B are shown in the Fig.3. 

   Next, we can get the local coordinates of all the projection points on the projection 

plane . For example, we assume the vector drawn from the center S to the 

projection point Pl to be (x1, y1, z1) (cf. Fig.4). Then, the local coordinates of the point 

Pl denoted by (x1*, y1*, z1*) are given by 
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in which J is the transformation matrix expressing the local Cartesian variables in 

terms of the global variables. The entries of the matrix J are the direction cosines 

between the global and local coordinate axes in the 3D Cartesian system.  
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3.2. The search tree on the projection plane for determining the skeleton points 

In the preceding section, we project all the nodes in the box Bs on the projection plane 

 and compute the local coordinates of all the projection points. In the course of this 

section, we will determine the skeleton points by constructing the search tree on the 

projection plane. 

   Firstly, we construct a general quadtree on the projection plane with the depth to 

be 3 which covers all the projection points. The box of the quadtree parallel to the 

axes x* and y*, is the minimal square bounding all the projection points and centered 

by the point S (cf.Fig.5). The square box is called the cell of level 0. Then, start 

dividing the parent cell into four equal child cells of level 1. Continue dividing in this 

way, that is, take a parent cell of level k and divide it into four child cells of level k+1. 

A cell having no child cells is called a leaf. Therefore, we can get sixty-four leaves in 

this quadtree structure. 

 
Fig. 5.  The box of the quadtree on the projection plane and the numbering scheme for the child 

cells of any given parent cell 

Secondly, we number the sixty-four leaves in a special way shown in the Fig.6, and 

take the serial number as the priority order of the leaves. For example, we take the 

leaf at the left-top corner of the bounding box as the first priority with zero. The leaf 

at the right-bottom corner which is farthest from the first leaf is taken as the second 

priority with one. The third leaf which is farthest from the first and second leaves as 

possible is taken as the third priority with two. In this way, we can ensure that the 

distance in the projection plane between any two leaves whose numbers are adjacent 

is farthest as possible. Here, we try to get the columns or rows in the two low rank 

matrices which are computed by the skeleton points and have the larger linear 

independence based on the farther distance within the projection plane. In Section 3.1 



we project all the nodes in the box Bs on the projection plane and the projection 

points can be obtained. After the construction of the quadtree, all of the projection 

points are clustered by the leaves. 

 
Fig. 6.  The priority order of all the leaves and the recorded projection point in a leaf 

Thirdly, we sequentially search the projection points in the leaves based on the 

priority order, and only one projection point will be recorded in a leaf where more 

than one projection point is existent. The projection point closest to the center of the 

leaf will be recorded when there are more than one projection points (cf.Fig.6). For 

example, we record the first projection point in the leaf with first priority, then, the 

leaf with second priority will be considered. If there is no projection point, we will 

record the second projection point in the leaf with next priority. In this way, several 

projection points can be obtained. Finally, we can take the nodes which correspond to 

the recorded projection points in the box Bs as the skeleton points. 

  The same as the procedure of determining the skeleton points in the box Bs, we can 

obtain the skeleton points in the box B t.  Take the minimum value of 

the numbers of skeleton points in boxes Bt and Bs as the rank k of the low rank 

matrices U and V (cf Sect. 2.2). We take the same number of skeleton points 

according to the rank k in the boxes Bt and Bs, respectively. 

Using the above procedure, we can obtain a set of skeleton points in boxes Bt and Bs, 

respectively. The distances between the skeleton points are farthest as possible in the 

projection plane, so that the columns or rows in low-rank matrices which correspond 

to the skeleton points can be linearly independent as large as possible. 



 

3.3. Assembling the low rank approximation 

In Section 3.2, we have obtained the skeleton points in the two boxes. Then, the low 

rank approximation represented as the out-product form (cf Sect. 2.2) can be obtained 

as follows: 

   Firstly, the low rank matrix U is assembled as its columns derived from the matrix 

A which correspond to the skeleton points in the box Bs. Secondly, we construct the 

low rank matrix VT as its rows derived from the matrix A which correspond to the 

skeleton points in the box Bt. At last, we obtain the low rank approximation of the 

matrix A. However, the amount of storage required for the low rank approximation 

can still be reduced, for the low rank matrices U and V usually have orthonormal 

columns.  

   Hence, we assemble the low rank approximation based on the pseudo-skeleton 

representation as follows[17,18]: 

                     nikjm
T

kk
AAAUV :1,

1
,:1 :1:1

                      (6) 

where
kk jik AA
:1:1 ,: . The parts

kjmA
:1,:1 and ni k

A :1,:1
are derived from the original matrix A 

the same as the matrices U and V. In this way, we construct the matrix V 

                       nik
T

k
AAV :1,

1
:1

                          (7) 

where 1
kA assembled by the SVD of the matrix kA . 

 

4. NUMERICAL EXAMPLES 

The purpose of this section is to validate the new algorithm. In Sect.4.1, we apply the 

GMCA and the ACA in the examples with the single layer potential for comparison. 

For the original ACA fails to converge in these two situations shown in Fig.8, the 

HCA is applied to compare with the GMCA in Sect.4.2. In Sect.4.3, we take another 

example to show the comparison of convergence history between GMCA and ACA. 

 

4.1. Examples with single layer potential  



Here, we consider the matrix A with entries  

njmi
yx

A
ji

ij 


 ,1:  

where the vertices xi X , yj Y , are chosen as in the following figures.  

 

Fig. 7. The geometries for the examples with the single layer potential 

Table 1. Numerical results for the examples with the comparison of the GMCA and ACA 

 GMCA ACA Example m n 
k Accuracy k Accuracy 

1 1600 1600 3 410864.3   4 510073.1   

2 3600 3600 5 510617.1   5 510266.1   

3 1600 1600 4 41052.6   4 510821.8   

4 3600 3600 4 610895.4   4 510026.2   

5 3600 3600 3 610803.2   3 510869.3   

6 2700 2025 4 410658.6   4 510309.7   

7 3200 3200 5 410181.1   6 510418.2   

8 3200 1600 4 410747.3   4 410042.1   

9 1600 3200 5 510168.1   5 510348.4   

The numerical results for the examples shown in Fig.7 are listed in Table 1. In the 

Table, m and n denote the numbers of the vertices in the domains X and Y, 

respectively. The approximation accuracy and the corresponding rank k obtained by 

the GMCA and the ACA are listed in column 4, 5, 6, 7, respectively. It is seen that the 



accuracy for some examples of the new algorithm is somewhat worse than that of the 

ACA. However, the necessary ranks for them are less and the storage requirement can 

be further reduced. 

 

4.2. Examples with single layer potential gradient  

In this section, we consider the matrix A with entries  

njmi
yx

yxxn
A

ji

iii
ij 




 ,

),(
:  

where the vertices xi *XX  , yj *YY  , are chosen as in the following figures , 

)( ixn is the outer unit normal vector to X X*. When X and Y lie in the same plane, 

the outer unit normal )( ixn and the vector drown from yi to xi are perpendicular. Thus, 

all entries ijA with xi X and yj Y  are zero. 

 

 

Fig. 8.  The geometries for the examples with single layer potential gradient 

Table 2. Numerical results for the examples with the comparison of the GMCA and HCA 

 GMCA HCA Example m n 
k Accuracy k Accuracy 

a 400 800 2 410137.3   4 610606.4   

b 800 400 2 510448.2   4 610943.7   

The numerical results for the examples with the single layer potential gradient are 

listed in Table 2. In these situations, the original ACA fails to converge[12]. Therefore, 

we apply the HCA and the GMCA for comparison. The approximation accuracy and 

the corresponding rank k obtained by the GMCA and the HCA are listed in column 4, 

5, 6, 7, respectively. The comparative accuracy for the examples is similar to that 

presented in Sect.4.1. As we can see, however, if we increase the rank of the 

approximation by the GMCA, the equivalent accuracy to the HCA can be achieved.  



 

4.3. The comparison of convergence history between GMCA and ACA 

In this section, we show the comparison of convergence history between GMCA and 

ACA by approximating matrix M NA R  resulting from the single layer potential 

operator (cf.Sec.4.1) between two point-sets which hold the strong admissibility 

condition (cf.Fig.9). 

 
Fig. 9. The two point-sets for matrix M NA R   

In Fig.10 we compare the quality of the approximation obtained by GMCA and ACA 

to show the convergence history of both methods. Here, we show the approximation 

results of GMCA by choosing the crosses depending on the priority order of the 

skeleton points. With the rank of approximation increasing, the approximation 

accuracies obtained by GMCA and ACA are improved. 

 
Fig. 10. Comparison of the convergence history between GMCA and ACA 

In Fig.11 we show the quality of the approximation obtained by GMCA and ACA, 

with the number of the matrix entries ( M N ) increasing. Here, we just increase the 

number of points in the two point-sets(cf.Fig.9). With the M N increasing, the 



approximation accuracy obtained by GMCA is somewhat better than that of ACA. 

 
Fig. 11. Comparison of the quality of approximation between GMCA and ACA with M N  

increasing 

 

5. CONCLUSIONS AND FUTURE WORK 

  A new non-iterative low rank approximation algorithm is proposed in this paper. 

This algorithm determines the skeleton points based on the geometric mapping which 

just needs some sample geometry transformations. As it has been detailed, we can 

obtain the skeleton points before assembling the low rank approximation. The 

procedure of determining the skeleton points and the integral operation of the kernel 

function are separated. In contrast with our method, the original ACA performs the 

integral operations which correspond to the entries of the selected column or row in 

the matrices of BEM in each iterative process when the higher order elements are 

used. This is why so far most fast BEM implementations are based on constant 

elements. Therefore, we try to determine the skeleton points by the geometric 

mapping in this paper. 

Our method can determine the skeleton points in the admissible interacting blocks 

in advance, and the boundary integrals which correspond to the skeleton points in the 

far-field can be computed together with those for the near-field interaction. Integrals 

for both near-field and far-field interactions are computed in a unified framework in 

the same way as the traditional BEM. It will be convenient and effective to use higher 



order elements in the fast BEM. A nested bases approximation can also benefited from 

our algorithm [19]. Moreover, it may be more effective when we implement the 

parallel computation based on the GPUs. 

  The original ACA fails to converge in some situations where the ACA needs to be 

modified [12]. However, the new algorithm proposed in this paper can still get the 

low rank approximations in these situations. 

  Numerical examples have shown that the new algorithm can obtain the low rank 

approximation but with somewhat lower accuracy compared with the ACA. 

Concerning its advantages stated above, however, our method deserves further 

consideration. 
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